Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chun-Xiang Wang,* Yong Li, Qing-Hua Zhang, Ding-Jian Cai and Xiao-Bing Xie

School of Materials & Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China

Correspondence e-mail: jxwchx@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.007 \text{ Å}$ R factor = 0.024 wR factor = 0.061 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[diaquadi- μ_5 -succinato- μ_6 -succinato-didysprosium(III)]

The title compound, $[Dy_2(C_4H_4O_4)_3(H_2O)_2]$, has been synthesized under hydrothermal conditions. The asymmetric unit consists of two Dy^{3+} cations, three succinate anions and two aqua ligands. The succinate ligands exhibit *gauche* and *anti* conformations with different coordination modes. The Dy atoms are bridged into a three-dimensional network by succinate ligands.

Comment

The title compound, (I), is almost isostructural with the corresponding cerium complex (Seguatni *et al.*, 2004). The asymmetric unit consists of two Dy^{3+} cations (Dy1 and Dy2), three succinate anions (*L*1: O1–O4/C1–C4; *L*2: O5–O8/C5–C8; *L*3: O9–O12/C9–C12) and two aqua ligands (O13 and O14) (Fig. 1). Bond lengths and angles within the succinate anions exhibit normal values (Fleck, 2002; Serpaggi & Férey, 1999). The Dy atoms are each coordinated by nine O atoms of six succinate anions and one aqua ligand, forming a tricapped trigonal prism, with Dy–O bond lengths in the range 2.323 (3)–2.544 (3) Å (Table 1). The polyhedra are edge-shared, generating one-dimensional infinite chains along the [100] direction. The Dy1···Dy2 separation within the asymmetric unit is 4.028 (5) Å.

According to their different conformations, the three succinate ligands may be divided into two groups: (i) ligands

© 2006 International Union of Crystallography All rights reserved Received 8 December 2005 Accepted 24 January 2006

Figure 1

A part of the polymeric structure of the title compound, showing 45% probability displacement ellipsoids for non-H atoms. Symmetry codes: (i) x, 1 + y, z; (ii) 2 - x, 2 - y, 2 - z; (iii) 1 - x, 2 - y, 1 - z; (iv) 1 - x, 2 - y, 2 - z; (v) x - 1, y, z; (vi) x - 1, 1 + y, z.

L1 and *L2*, with a *gauche* conformation [C-C-C-C = 70.5 (5) and $-89.6 (5)^{\circ}$, respectively], function as chelatingbridging tridentate and bridging bidentate ligands, respectively; (ii) *L3*, with an *anti* conformation, functions as a chelating-bridging tetradentate ligand. Along the [001] direction, polyhedra are linked by the *gauche* dicarboxylate groups into layers parallel to (010) and they are pillared by the *anti* succinate anions, forming a three-dimensional framework.

The aqua ligands participate in extensive hydrogen-bonding interactions. Each water molecule forms hydrogen bonds to two carboxylate O atoms (Table 2), which make a significant contribution to the stability of the crystal structure.

Experimental

A mixture of $DyCl_3 \cdot 6H_2O$ (1.00 mmol, 0.38 g), succinic acid (1.00 mmol, 0.12 g), NaOH (2.00 mmol, 0.08 g) and H₂O (10.0 ml) was heated in a 23 ml stainless steel reactor with a Teflon liner at 443 K for 48 h. The colourless column-like crystals were filtered off and washed with water and acetone (yield 32%, based on Dy).

Crystal data

$[Dy_2(C_4H_4O_4)_3(H_2O)_2]$	Z = 2
$M_r = 709.25$	$D_x = 2.846 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.646 (2) Å	Cell parameters from 256
b = 8.041 (2) Å	reflections
c = 14.086 (4) Å	$\theta = 3.3-26.7^{\circ}$
$\alpha = 96.915 \ (4)^{\circ}$	$\mu = 9.04 \text{ mm}^{-1}$
$\beta = 97.004 \ (4)^{\circ}$	T = 295 (2) K
$\gamma = 103.057 \ (4)^{\circ}$	Needle, colourless
V = 827.6 (4) Å ³	$0.18 \times 0.08 \times 0.06 \text{ mm}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.425, \ T_{\max} = 0.586$
4877 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.061$ S = 0.963413 reflections 254 parameters H-atom parameters constrained

Table 1

Selected bond lengths (Å).

Dy1-O1	2.361 (3)	Dy2-O1	2.544 (3)
Dy1-O4 ⁱ	2.439 (3)	Dy2-O2	2.430 (3)
Dy1-O6	2.332 (3)	Dy2-O3 ^{iv}	2.323 (3)
Dy1-O7 ⁱⁱ	2.488 (3)	Dy2-O5	2.377 (3)
Dy1-O8 ⁱⁱ	2.440 (3)	Dy2-O7 ⁱⁱ	2.400 (3)
Dy1-O9	2.454 (3)	Dy2-O9 ^v	2.408 (3)
Dy1-O10	2.435 (4)	Dy2-O11 ^{vi}	2.453 (4)
Dy1-O12 ⁱⁱⁱ	2.436 (3)	Dy2-O12 ^{vi}	2.515 (3)
Dy1-O13	2.423 (3)	Dy2-O14	2.376 (3)

3413 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.038P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.0016 (2)

 $R_{\rm int} = 0.018$

 $\theta_{\rm max} = 26.9^{\circ}$ $h = -9 \rightarrow 10$

 $k = -8 \rightarrow 10$

 $l = -18 \rightarrow 17$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.19$ e Å

 $\Delta \rho_{\rm min} = -1.49 \text{ e } \text{\AA}^{-3}$

2840 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x + 2, -y + 2, -z + 2; (ii) -x + 1, -y + 2, -z + 1; (iii) x, y + 1, z; (iv) -x + 1, -y + 2, -z + 2; (v) x - 1, y, z; (vi) x - 1, y + 1, z.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O13−H13A····O5 ^{vii}	0.85	1.97	2.816 (6)	173
$O13 - H13B \cdot \cdot \cdot O6$	0.85	2.11	2.959 (6)	179
$O14-H14A\cdots O4^{i}$	0.85	2.01	2.843 (5)	166
$O14-H14B\cdots O2^{iv}$	0.85	1.89	2.733 (4)	173
Symmetry codes: (i)	-x + 2, -y + 2	2, -z + 2; (iv)) $-x+1, -y+2$	2, -z + 2; (vii)

x + 1, y, z.

H atoms of methylene groups were included at calculated positions and treated as riding atoms, with C–H distances constrained to 0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The water H atoms were found in a difference map and refined with an O–H distance restraint of 0.85 (1) Å and with $U_{iso}(H) = 0.05$ Å². The highest peak is located 0.87 Å from atom Dy1 and the deepest hole 0.98 Å from Dy2.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2004); software used to prepare material for publication: *SHELXTL*.

The project was supported by Jiangxi Provincial Educational Foundation (grant No. 2005–146) and Jiangxi University of Science and Technology Foundation (grant No. 2003–1).

References

Bruker (2004). *SMART* (Version 6.0), *SAINT* (Version 6.0) and *SHELXTL* (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.

- Fleck, M. (2002). Z. Kristallogr. New Cryst. Struct. 217, 569–570.
 Seguatni, A., Fakhfakh, M., Vauley, M. J. & Jouini, N. (2004). J. Solid State Chem. 177, 3402–3410.
- Serpaggi, F. & Férey, G. (1999). Microporous Mesoporous Mater. 32, 311-318.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.