Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chun-Xiang Wang,* Yong Li, Qing-Hua Zhang, Ding-Jian Cai and Xiao-Bing Xie

School of Materials \& Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China

Correspondence e-mail: jxwchx@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.024$
$w R$ factor $=0.061$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[diaquadi- μ_{5}-succinato- μ_{6}-succinatodidysprosium(III)]

The title compound, $\left[\mathrm{Dy}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, has been synthesized under hydrothermal conditions. The asymmetric unit consists of two Dy^{3+} cations, three succinate anions and two aqua ligands. The succinate ligands exhibit gauche and anti conformations with different coordination modes. The Dy atoms are bridged into a three-dimensional network by succinate ligands.

Comment

The title compound, (I), is almost isostructural with the corresponding cerium complex (Seguatni et al., 2004). The asymmetric unit consists of two Dy^{3+} cations (Dy 1 and Dy2), three succinate anions (L1: O1-O4/C1-C4; L2: O5-O8/C5C8; L3: O9-O12/C9-C12) and two aqua ligands (O13 and O14) (Fig. 1). Bond lengths and angles within the succinate anions exhibit normal values (Fleck, 2002; Serpaggi \& Férey, 1999). The Dy atoms are each coordinated by nine O atoms of six succinate anions and one aqua ligand, forming a tricapped trigonal prism, with $\mathrm{Dy}-\mathrm{O}$ bond lengths in the range 2.323 (3) -2.544 (3) \AA (Table 1). The polyhedra are edgeshared, generating one-dimensional infinite chains along the [100] direction. The Dy1 \cdots Dy2 separation within the asymmetric unit is 4.028 (5) \AA.

(C) 2006 International Union of Crystallography All rights reserved

Received 8 December 2005
Accepted 24 January 2006

Figure 1
A part of the polymeric structure of the title compound, showing 45% probability displacement ellipsoids for non-H atoms. Symmetry codes: (i) $x, 1+y, z$; (ii) $2-x, 2-y, 2-z$; (iii) $1-x, 2-y, 1-z$; (iv) $1-x, 2-y$, $2-z ;(\mathrm{v}) x-1, y, z ;(\mathrm{vi}) x-1,1+y, z$.
$L 1$ and $L 2$, with a gauche conformation $[\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}=$ $70.5(5)$ and $-89.6(5)^{\circ}$, respectively], function as chelatingbridging tridentate and bridging bidentate ligands, respectively; (ii) $L 3$, with an anti conformation, functions as a chelating-bridging tetradentate ligand. Along the [001] direction, polyhedra are linked by the gauche dicarboxylate groups into layers parallel to (010) and they are pillared by the anti succinate anions, forming a three-dimensional framework.

The aqua ligands participate in extensive hydrogen-bonding interactions. Each water molecule forms hydrogen bonds to two carboxylate O atoms (Table 2), which make a significant contribution to the stability of the crystal structure.

Experimental

A mixture of $\mathrm{DyCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.00 \mathrm{mmol}, 0.38 \mathrm{~g})$, succinic acid $(1.00 \mathrm{mmol}, 0.12 \mathrm{~g}), \mathrm{NaOH}(2.00 \mathrm{mmol}, 0.08 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{ml})$ was heated in a 23 ml stainless steel reactor with a Teflon liner at 443 K for 48 h . The colourless column-like crystals were filtered off and washed with water and acetone (yield 32%, based on Dy).

Crystal data

$\left[\mathrm{Dy}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$Z=2$
$M_{r}=709.25$	$D_{x}=2.846 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.646(2) \AA$	Cell parameters from 256
$b=8.041(2) \AA$	reflections
$c=14.086(4) \AA$	$\theta=3.3-26.7^{\circ}$
$\alpha=96.915(4)^{\circ}$	$\mu=9.04 \mathrm{~mm}^{-1}$
$\beta=97.004(4)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=103.057(4)^{\circ}$	Needle, colourless
$V=827.6(4) \AA^{3}$	$0.18 \times 0.08 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996$)$
$\quad T_{\min }=0.425, T_{\max }=0.586$
4877 measured reflections

> 3413 independent reflections 2840 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$
> $\theta_{\max }=26.9^{\circ}$
> $h=-9 \rightarrow 10$
> $k=-8 \rightarrow 10$
> $l=-18 \rightarrow 17$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.038 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.19 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-1.49 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0016(2)
\end{aligned}
$$

Table 1
Selected bond lengths $(\AA$).

Dy1-O1	2.361 (3)	Dy2-O1	2.544 (3)
Dy1-O4 ${ }^{\text {i }}$	2.439 (3)	Dy2-O2	2.430 (3)
Dy1-O6	2.332 (3)	Dy2-O3 ${ }^{\text {iv }}$	2.323 (3)
Dy1-O7 ${ }^{\text {ii }}$	2.488 (3)	Dy2-O5	2.377 (3)
Dy1-O8 $8^{\text {ii }}$	2.440 (3)	Dy2-O7 ${ }^{\text {ii }}$	2.400 (3)
Dy1-O9	2.454 (3)	Dy2-O9 ${ }^{\text {v }}$	2.408 (3)
Dy1-O10	2.435 (4)	Dy2-O11 ${ }^{\text {vi }}$	2.453 (4)
Dy1-O12 ${ }^{\text {iii }}$	2.436 (3)	Dy2-O12 ${ }^{\text {vi }}$	2.515 (3)
Dy1-O13	2.423 (3)	Dy2-O14	2.376 (3)

Symmetry codes: (i) $-x+2,-y+2,-z+2$; (ii) $-x+1,-y+2,-z+1$; (iii) $x, y+1, z$; (iv) $-x+1,-y+2,-z+2$; (v) $x-1, y, z$; (vi) $x-1, y+1, z$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 13-\mathrm{H} 13 A \cdots \mathrm{O} 5^{\text {vii }}$	0.85	1.97	2.816 (6)	173
O13-H13B \cdots O6	0.85	2.11	2.959 (6)	179
$\mathrm{O} 14-\mathrm{H} 14 A \cdots \mathrm{O} 4^{\text {i }}$	0.85	2.01	2.843 (5)	166
$\mathrm{O} 14-\mathrm{H} 14 B \cdots \mathrm{O} 2^{\text {iv }}$	0.85	1.89	2.733 (4)	173

Symmetry codes: (i) $-x+2,-y+2,-z+2$; (iv) $-x+1,-y+2,-z+2$; (vii) $x+1, y, z$.

H atoms of methylene groups were included at calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances constrained to $0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were found in a difference map and refined with an $\mathrm{O}-\mathrm{H}$ distance restraint of 0.85 (1) \AA and with $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$. The highest peak is located $0.87 \AA$ from atom Dy1 and the deepest hole $0.98 \AA$ from Dy2.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

The project was supported by Jiangxi Provincial Educational Foundation (grant No. 2005-146) and Jiangxi University of Science and Technology Foundation (grant No. 2003-1).

References

Bruker (2004). SMART (Version 6.0), SAINT (Version 6.0) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Fleck, M. (2002). Z. Kristallogr. New Cryst. Struct. 217, 569-570.
Seguatni, A., Fakhfakh, M., Vauley, M. J. \& Jouini, N. (2004). J. Solid State Chem. 177, 3402-3410.
Serpaggi, F. \& Férey, G. (1999). Microporous Mesoporous Mater. 32, 311-318.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

